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ABSTRACT /563 {

Systems described by ordinary linear differential equations with time-varying
coefficients may be convenilently anelyzed using the concepts of state variables
and fundamental matrix. Characteristlically, the inverse of this matrix appears
in the state transition equation. An inversion property of the fundamentel matrix
applicable to a class of dynamic systems, which includes as a member trajectory
perturbation problems, is presented. This property allows the inverse matrix to
be obtained by a simple rearrangement of elements of the original matrix. When
the matrix 1s of high order, significant advantages acecrue in both time saving

and numerical saccursacy.
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INVERSION PROPERTY OF THE FUNDAMENTAL MATRTX
ASSOCIATED WITH TRAJECTORY
PERTURBATTON PROELEMS
By Alan L. Friedlander’

Increased emphasls has been gliven recently to the application of linesr per-
turbation techniques in studies of trajectory and guldance problems (e.g., 1, 2,
3).2 The resulting perturbed eéuations of motion are given by a set of ordinary
linear differential equations with time-varying coefflcients. The solution of
such a set can be greatly facilitated by the concepts of "state variasbles" and
"fundamental matrices”, where the state transition equations are expressed in
terms of these computable matrices, Characteristically, the inverse of the
fundamental matrix appears in the equations. It 1s recognlzed that inversion of
high~order matrices can be both time consuming snd insasccurate even with the aid
of digital computers. Fortunately, in the case of perturbed trajectories there
exlsts an Inversion property, which allows the inverse to be obtained by a
simple rearrangement of elements of the original matrix. Such a property has
been indleated by McLean et sl (2) for the special case of coasting trajectorles.
The purpose of the present paper is to extend the inversion property to a class
of dynamic systems, which includes as a member trajectory motion influenced by
an acceleration foreing function (e.g., thrust acceleration) in addition to
gravitational acceleration. Also, it is felt that the usefulness of the inversion

property deserves wider attentione
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2Numbers in parentheses indicate References gt end of paper.




State Equations and Fundsmental Matrix

Consider a linear system described by a set of n first-order differentisal
equations. In vector and matrix notation

ds
T - A(t)s(t) = B(t)F(t) [1]

where s 1s an n~dlmensionsal state vector, £ I1s an m-dimensional vector of
forcing inputs applied to the systemy, and A and B are (n X n) and (n X m)
coefficient matrices, respectively. The state 1s defined as a set of output
variables from which the entire future behavior of the system may be determined,
provided the future inputs to the system are known. Assume initialization of the
problem at a fixed time t, with corresponding state s(to). In genersl, two
types of problems are admitted; onme where the region of interest lies between
fixed~time interval (to, tf), and the other where z terminal +ty 1is not specified.
Tn elther case the solution of [1] may be facilitated by introducing an (n X n)
fundemental matrix A(t), which satisfies the following equation

da
S+ AB)AE) = 0 [2]

and is subject to an arbitrary boundary condition to be discussed presently. In
the literature, [2] has often been called the adjoint equation to [1] and A 1is
the adjoint matrix.

Premultiplying [1] by A, postmultiplying [2] by s, and adding the two
modified equations yield

?.%5 (As) = A(£)B(£)£(%)

When this equation 1s integrated between the limlts t; and t9, the general stste

transition equation is

s(tp) = A1(t,)A(ty )8 (by) + A71(t5) A(L)B(t)£(t)dt [3]
t1
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Nonsingularity of A 1is assumed, and the superseript -1 denotes the matrix
inverse operation. Several interpretations of this equation are:

(1) Suppose thé problem~definition does not specify a fixed terminal time.

A convenient choice of boundary condition for [2] is A(t,) = T (identity matrix).
Letting t7 = to, and tp = t, [3] glves the generml solution for s(t) in terms
of the initial state and the effect of f(t) over the interval (to, t). If A,
B, and f are assumed to be known functions of time, [1] does not have to be
solved repeatedly for different values of the inltial state.

(2) Suppose a fixed terminal time ty 1s specified and the terminal state
is of primary interest. A convenient choice of boundary condition is A(te) = T,
and A(t) is computed by integrating [2] backwards in time. Letting to = tf
and t7 = t, [3] glves the terminal state in terms of the instantaneous state
and the effect of f£(t) over (t, tp). If a desired terminal state 1s specified
and s(t) 1s measured, then synthesis of a control function f(t) may proceed
from the terminal form of [3],

(3) Consider a dynamic process that Is to be repetitively controlled based on
sampled measurements of the time~varying state. Assume that the messurements sre
contaminated by random nolse, and assume that a statistical filtering and predic-
tion procedure is employed to improve the state memsurements. The deterministic
prediction equation is given by [3], and may be operated on statistically.

The previous development Indicates the requirement for inverting the
fundamental matrix, An inversion property, which allows great simplification of
this operation, 1s now presented for a special class of systems.

Inversion Property of the Fundamentsl Matrix

Consider s class of systems having the following restrictions:

(1) The number of state variables is even.
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(2) The system coefficient matrix A can be partitioned into 4 square sub-
matrices each of order n/2 such that the diagonal submatrices are equal to the
null matrix snd the off diagonal submatrj.ces are symmetrical.

A common example of an even-ordered state vector 1s & set of output variables
and their first derivatives. TIf a system formulation does not meet the second
restriction there may exist a transformation of variables that allows 1t to do so.

The fundamental matrix A may be partitioned into 4 square submatrices

each of order n/2.

Ay TA

: L 2

A = [4]
A3 A4=

It 1s proposed to show that if the identity matrix is chosen as & boundary con-

dition for A, then

A—l = T T [5 ]

The superscript T denotes the matrix transpose operation. Note that the inverse
matrix is obtained by a simple rearrangement of elementsj l.e., no addition or
multiplication 1s necessary. A straightforwsrd proof of the inversion property
follows.

By definition

-1

M T =T

Differentiation of this expression and substitution from [2] ylelds

-1
=M [6]

Now partition A™l dinto 4 submatrices each of order n/2

=1;111: (7]
5|4
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Also, as stated previously A may be partitioned as

T .
A= jofa M =n

Equation [6] 18 glven in partitioned form on substitution of [7] and [8]

‘
a (PPl [MBs| MRy
it |, 2, | [WP, [T,

-

[8]

[»]

Now taking the transpose of the partitioned matrices A and A, using the symmet-

rical property of M and N, and substituting into the tramspose of equation [2]

gives
T(,.T ‘ T iy
a Ay | Mg . A, | -BA,
at T{,.T T i
Az A n -M/\l "'MAS

[10]

Finally, & term by term comparison of [9] and [10] shows that the two differential

equations are equlivalent 1f

T | _AT
o P, |B, ) AT |-AT
=T T | .T

Py | Ty “As | My

Tn order that [11] be true in general the boundary conditions on each of the
partitioned matrices must be the same. However, it has been assumed that the
boundary eondition is the identity matrix, e.g., A(t,) = I. Thus,
A"l(to) = AT(t,) = I. Hence, the boundary conditions are the same and the
proof of [5] 1s complete.

A more genersl inversion property can be extended to the case where the

boundary condition on A 1s not the identity matrix. For example, 1f the

[11]

actual quantities of interest are certain linear combingtions of the terminal state

varisbles, then A(te) may not be chosen arbltrarily. The inversion property 1s
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a
derived from [10] and [11] by showing that Jf (PA) = O Thus, the product of P

and A st be constant for asll time.

From [4] and [11]

T T T T,
AsAqy = A A - A '
PA = é 1 gés ghz 2?4 = K (constant) [12]
| Mhs - Adhy | My - A
Multiplying through by Pl and then Inverting gives
i T
v A -/
NI o I o é g [13]
-~A. A
3 1

Note that [5] is a special case of [13] when X = I. The usefulness of [13] is
apparent sinece K 18 obtailned from [12] for any choice of boundary condition,
and belng constant 1t needs to be inverted only once. Also, if A 18 obtalned
by numerical integratlon, [12] may be used as a check on the accuracy of the
Integration.

Application to Traleetory Problems

Motion of a space vehlcle expressed in fixed cartesian coordinates (x5 ¥y 2)y

which is influenced by & gravitational potential field U(x, y, x) and & non-
potential acceleration vector f£(t), may be described in component form by the

set of six equations

av S
x U
— + T
dt x X
X > ¥,z [14]
dx .
T

where the partial derivatives are the components of the gradlent of U and are
continuous in the region of interest. The nonpotentlal aceceleration components
may be, for example, due to thrust. The vector velocity, position, and accelera-

tion may be defined as



-V-x x fX
V=¥ = T =|f 5
v‘z Z fz

If & known reference trajectory solution of the gbove equations 1s =assumed,
linear perturbation techniques may be used effectively to investigate perturba~
tions about the reference and corrective guidance maneuvers. I the sbove
equations are expanded sbout the reference in s Taylor serles and all terms
higher than first order sre neglected, the perturbed equations of motion may be

written as

ds _ 4 [8V] _ A |8V 4 By [16]
dt dt 5r dr

where the six~dimenslongl state vector s 1is defined in terms of the components
of the perturbed velocity and positiony the order of partitioning is arbitrary.

It can be shown that the matrices A and B in partitioned form are

A= oOlM ’ B:: [17]

Ii0

where M ig made up of the second partials of U with respect to =Xy yy and z.

B d2y %y |
2 5% oy 3% oz
3%y >y >%y
M= M(t) = - | === = -a—y'z' 5oz [18]
2y 25 a%p
_Ex oz oy oz %2 ]

Since M is symmetric, the linearized trajectory problem falls into the category
of system discussed previously, and the inversion property of fundamental matrices
is applicefble. It is important to point out, however, that the inversion property

is not true if the problem is formulated in other than fixed ecartesian coordinates.
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If the foreing scceleration is due to thrust, £(t) = F(t)/m(t), Wwhere the
thrust foree F(t)_ and vehlcle mass m(t) wmey be subject to independent perturba-
tions. Although it is possible to express of 1in terms of ®m =znd BF sand
avold reformulation of the problem azs given above,' it may be desirable to trest
dm =8 5 state variable and BF =as the forcing function. In this case the
dimension of the stabe vecter lncreases to 7, and tﬁe inversion ?roperty as glven
by [8] does not holds hewever, s modified formula, which still allews rather
simple inversion, may be developed. The auxillary relation between mass flow
rate, thrusty and jet veloeity 1s added to equations [14], mnd f 1is replaced

by F/m. FEquation [16] then becomes

4 |37 5V '
== gr = A 2:_- + BSF [19]
m I

where the new coefficient matrices A sand B are changed accordingly from [17].

Speciﬁeally, A is inereassed by s seventh row and cplunm and may be partitioned

gs
0 (M|a Fe
1
A= |T |00 |s 8=~ |F [20]
0]0|o0 ™F,

Correspondingly, the fundamental matrix A 1is incremssed by a seventh row and
colum. Since both velocity and position state transition depend upon mass, while
mass state transition depends only upon mass in a one-to-one fashion, A may be

partitioned as

M B M




o

where M and A, are each three-dimensional vectors. Proceeding s in the pre-

vious section it can be shown that ALl 1s given by

T AT
MISIEN

AL |3 [ AT | R, [22]
EEE

whepe
T T
Py = A AN
: T
by = A3T7‘1 - AN
Thusy the modified inversion property retains the major chermcteristlc of simple

term resrrasngement slthough some algebra 1s required to obtaln the elements of
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